\[
G = \int \eta_1(\vec{A}, \alpha_1, \ell_1, m_1, n_1)(\vec{r}_A) \eta_2(\vec{B}, \alpha_2, \ell_2, m_2, n_2)(\vec{r}_B) dV_1 dV_2
\]\[
\times \frac{1}{r_{12}} \frac{\eta_3(\vec{C}, \alpha_3, \ell_3, m_3, n_3)(\vec{r}_C) \eta_4(\vec{D}, \alpha_4, \ell_4, m_4, n_4)(\vec{r}_D)}{\ell_{12}^{\ell_1 + \ell_2} \ell_{34}^{\ell_3 + \ell_4} \ell_{12}^{\ell_1 + \ell_2} \ell_{34}^{\ell_3 + \ell_4} \ell_{12}^{\ell_1 + \ell_2} \ell_{34}^{\ell_3 + \ell_4}} dV_1 dV_2
\]
\[
= \Omega \sum_{\ell=0}^{\ell_{12}} \sum_{r=0}^{\ell_1 + \ell_2} \sum_{\ell' = 0}^{\ell_3 + \ell_4} \sum_{s'=0}^{\ell_1 + \ell_2} \sum_{i=0}^{\ell_1 + \ell_2}

B_{\ell,\ell',r,r',i}(\ell_1, \ell_2; \ell_3, \ell_4) \sum_{m_1,n_1} \sum_{m_2,n_2} \sum_{m_3,n_3} \sum_{m_4,n_4}

\times \exp \left(-\frac{\alpha_1 \alpha_2 \vec{A} \vec{B}}{\gamma_1} - \frac{\alpha_3 \alpha_4 \vec{C} \vec{D}}{\gamma_2} \right)
\]

where

\[
\nu = \ell + \ell' + m + m' + n + n' - 2(r + r' + s + s' + t + t') - (i + j + k)
\]
\[
\delta = \frac{1}{4\gamma_1} + \frac{1}{4\gamma_2}
\]

and the “Gaussian product factor” \(\Omega \), involving the original factors \(K_1 \) and \(K_2 \), is given by

\[
\Omega = \frac{2\pi^2}{\gamma_1 \gamma_2} \left(\frac{\pi}{\gamma_1 + \gamma_2} \right)^{1/2} \exp \left(-\frac{\alpha_1 \alpha_2 \vec{A} \vec{B}}{\gamma_1} - \frac{\alpha_3 \alpha_4 \vec{C} \vec{D}}{\gamma_2} \right)
\]

One thing is clear from this rather awesome formula; the electron-repulsion integral is simply a weighted sum of the integrals \(F_\nu(x) \). The coefficients which multiply the \(F_\nu(x) \) involve

1. The powers of \(x, y, \) and \(z \) in the Cartesian factors of each of the GTFs.
2. The exponents of each of the GTFs.
3. The components of the position vectors of each GTF.

The B terms can be simplified by the definition of

$$\theta(\ell, \ell_1, \ell_2, a, b, r, \gamma) = f_\ell(\ell_1, \ell_2, a, b) \frac{\ell! r^{\gamma - \ell}}{r!(\ell - 2r)!}$$

Then the B involving the “x-components” is

$$B_{\ell, \ell', r_1, r_2, i}(\ell_1, \ell_2, A_x, B_x, F_x, \gamma_1; \ell_3, \ell_4, C_x, D_x, Q_x, \gamma_2) = (-1)^{i'} \theta(\ell, \ell_1, \ell_2, P A_x, P B_x, r, \gamma_1) \theta(\ell', \ell_3, \ell_4, Q C_x, Q D_x, r', \gamma_2) \times \frac{(-1)^{i'} (2)^{2(r + r')} (\ell + \ell' - 2r - 2r')! \delta^i p_x^\ell p_x^{\ell'} - 2(r + r' + i)}{(4 \delta)^{\ell + \ell' i}[\ell + \ell' - 2(r + r' + i)]!}$$

With completely analogous expressions for the other two B factors.